图连通性(一):Tarjan算法求解有向图强连通分量

Note: 本文最初于 2011年01月27日 星期四 20:32 在 hi.baidu.com/lydrainbowcat 发表。šš

参考文献:http://www.byvoid.com/blog/scc-tarjan/

[有向图强连通分量]

在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components),简记为SCC。

下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。

858058437ca89e4272f05d2e

直接根据定义,用双向遍历取交集的方法求强连通分量,时间复杂度为O(N^2+M)。更好的方法是Kosaraju算法或Tarjan算法,两者的时间复杂度都是O(N+M)。本文介绍的是Tarjan算法。

[Tarjan算法]

Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。

定义DFN(u)为节点u搜索的次序编号(时间戳),LOW(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。

对于树枝边(u,v),有low[u]=min(low[u],low[v]).

对于后向边(u,v) (指向在当前栈中节点的边),有low[u]=min(low[u],dfn[v]).

当DFN(u)=LOW(u)时,以u为根的搜索子树上所有节点是一个强连通分量。

接下来是对算法流程的演示。

从节点1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6],找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。

2e32ebd0e621c1dea0ec9ced

返回节点5,发现DFN[5]=LOW[5],退栈后{5}为一个强连通分量。

cf3346fcfb94dad3b901a08f

返回节点3,继续搜索到节点4,把4加入堆栈。发现节点4向节点1有后向边,节点1还在栈中,所以LOW[4]=1。节点6已经出栈,(4,6)是横叉边,返回3,(3,4)为树枝边,所以LOW[3]=LOW[4]=1。

942641951e34fd1ad1135eba

继续回到节点1,最后访问节点2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个连通分量{1,3,4,2}。

dd47112251715ca2d7cae282

至此,算法结束。经过该算法,求出了图中全部的三个强连通分量{1,3,4,2},{5},{6}。

可以发现,运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次堆栈,每条边也只被访问了一次,所以该算法的时间复杂度为O(N+M)。

求有向图的强连通分量还有一个强有力的算法,为Kosaraju算法。Kosaraju是基于对有向图及其逆图两次DFS的方法,其时间复杂度也是O(N+M)。与Trajan算法相比,Kosaraju算法可能会稍微更直观一些。但是Tarjan只用对原图进行一次DFS,不用建立逆图,更简洁。在实际的测试中,Tarjan算法的运行效率也比Kosaraju算法高30%左右。此外,该Tarjan算法与求无向图的双连通分量(割点、桥)的Tarjan算法也有着很深的联系。学习该Tarjan算法,也有助于深入理解求双连通分量的Tarjan算法,两者可以类比、组合理解。

求有向图的强连通分量的Tarjan算法是以其发明者Robert Tarjan命名的。Robert Tarjan还发明了求双连通分量的Tarjan算法,以及求最近公共祖先的离线Tarjan算法,在此对Tarjan表示崇高的敬意。

var
 n,m,i,j,x,y,z:longint;
 a,b:array[0..1000,0..1000]of longint;//图
 dfn,low,s:array[0..1000]of longint;//dfn为时间戳,low为祖先,s为栈
 vis,ins:array[0..1000]of boolean;//vis为是否访问,ins为是否在栈中
 num,p:longint;
function min(x,y:longint):longint;
 begin
  if x<y then exit(x) else exit(y);
 end;
procedure tarjan(u:longint);
 var
  i,v:longint;
 begin
  inc(num);//给定一个时间戳
  dfn[u]:=num;
  low[u]:=num;
  vis[u]:=true;
  inc(p);//入栈
  s[p]:=u;
  ins[u]:=true;
  for i:=1 to b[u,0] do
   if not vis[b[u,i]] then//未被访问
    begin
     tarjan(b[u,i]);
     low[u]:=min(low[u],low[b[u,i]]);//是树枝边,取两个low的min值
    end
   else if ins[b[u,i]] then//在栈中
    low[u]:=min(low[u],dfn[b[u,i]]);//非树枝边,去low与dfn的min值
  if dfn[u]=low[u] then//已经找到一个强连通分量
   repeat
    v:=s[p];
    write(v,' ');
    ins[v]:=false;
    dec(p);
    if u=v then writeln;
   until u=v;
 end;
begin
 readln(n,m);
 for i:=1 to m do//构图
  begin
   readln(x,y);
   inc(b[x,0]);
   b[x,b[x,0]]:=y;
  end;
 tarjan(1);
end.

One Comment

  1. Pingback: 图连通性(二):Tarjan算法求解割点/桥/双连通分量/LCA – Rainbow & Freda

发表评论

电子邮件地址不会被公开。 必填项已用*标注